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1. Introduction 

Adding an inorganic or organic filler to a polymer matrix to make polymer 
composite materials has become a very expansive field. Interest in polymer 
nanocomposites increased in recent decades due to the unique characteristics of 
polymer modified with nanoscale-size fillers.1 By definition, a nanocomposite 
comprises 2 or more dimensions (phases) where one or more of the filler 
dimensions is of nanometer or 10s of nanometers scale.2,3 The increased optical, 
mechanical, chemical, electrical, and reinforcement properties of the 
nanocomposites arising from the size-dependent properties of the nanoscale filler 
afford diverse applications in protection, cosmetics, automobiles, sporting goods, 
electronics, etc.3  

More recently, functionalized nanoparticles in composites have been found to 
affect the bulk polymer morphology by manipulating the miscibility between the 
nanoscale filler and the polymer matrix.4–6 The particles can participate in the 
polymer matrix and affect the phase diagram, resulting in a change in polymer 
morphology, increased structural control, and, potentially, improved mechanical 
properties.7 To make stimuli-responsive composites, supramolecular polymers 
matrices were used to afford well-controlled nanostructures.3,8–12  

Supramolecular polymers,13 defined as polymers formed by assembly of one or 
more molecular components with reversible bonds and large association constants 
(Ka ≈ 106 to 1021), offer good materials properties with better processability and a 
stimuli-responsive behavior.13–17 The Rowan and Weder groups developed an 
optically healable supramolecular polymer system that uses the strong metal-
coordination bonds of a divalent (or trivalent) metal cation to a pyridine-based 
ligand 2,6-bis(1'-methyl-benzimidazolyl)-4-hydroxypyridine (MeBIP).18–24 
Supramolecular polymers of a telechelic macromonomer (BKB, poly(ethylene-co-
butylene) polymer core, and MeBIP endcaps) and a Zn2+ or La2+ salt formed 
optically healable free-standing films. These elastomeric films microphase separate 
into metal-ligand complex-rich domains and polymer core domains similar to those 
formed by polyurethane hard and soft segments.18,20 However, these films lack the 
toughness and stiffness needed for many US Army applications. One method to 
improve the physical properties of a film is to alter the morphology of the polymer 
matrix.25    

Supramolecular polymers provide potential innovative applications in coatings, 
adhesives, fuel cells, and biosensors due to retention of physical and mechanical 
properties with increased processability, self-healing, and stimuli responsiveness. 
Incorporating a nanoscale filler into the supramolecular polymer can improve the 
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physical and mechanical properties and application window while still maintaining 
processability and stimuli responsiveness. This project primarily focuses on the 
design, synthesis, and morphological characterization of a series of supramolecular 
nanocomposite films with unfunctionalized and functionalized gold (Au) 
nanoparticles. Morphological effects of different nanoparticle loadings are 
investigated using small-angle X-ray scattering (SAXS) and transmission electron 
microscopy (TEM).  

To modify the morphology of BKB supramolecular polymer films, we synthesized 
supramolecular nanocomposites comprising Au nanoparticles functionalized with 
MeBIP ligands (MeBIP-gold nanoparticles [AuNps]) that directly influence the 
supramolecular polymer formation (Fig. 1). The morphological effects of 
nanoparticle loadings (0–1.5 wt%) within the BKB supramolecular polymer were 
investigated using SAXS and TEM.  

 
Fig. 1 Supramolecular polymer nanocomposite components 

2. Experimental 

2.1 Materials 

Shown in Fig. 2, 2,6-bis(1'-methyl-benzimidazolyl)-4-hydroxypyridine (MeBIP-
OH) was synthesized as reported.19 BKB macromonomer was also synthesized as 
reported.18 Potassium hydroxide (KOH, Aldrich, 85.0%), 1,2-dibromododecane 
(Aldrich, 98%), dimethyl sulfoxide (DMSO, anhydrous, Aldrich, 99%), potassium 
thioacetate (Aldrich, 98%), N,N-dimethylformamide (DMF, Aldrich, 99.8%), 
chloroform (CHCl3, Aldrich), magnesium sulfate (Aldrich, 97%), methanol 
(MeOH, Aldrich), hydrochloric acid (HCl, Fisher Scientific), zinc (II) perchlorate 
hexahydrate (Zn(ClO4)2, Aldrich), 1-octanethiol (OCT, Aldrich, 98.5%), 
didodecyldimethylammonium bromide (DDAB, Aldrich, 98%), Au (III) chloride 
(AuCl3, Aldrich, 99%), borane tert-butylamine complex (TBAB, Aldrich,  97%), 
phosphoric acid (Fischer Scientific), triphenylphosphine (Aldrich, 99%), diethyl 
azodicarboxylate (40 wt% in toluene) and acetonitrile (ACN, Aldrich, 99.8%) were 
used as received. 

MeBIP-Nps in solutionBKB

+
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Fig. 2 Synthesis of MeBIP-OH19 and BKB macromonomer18,22  

2.2 Instrumentation 

TEM was performed on samples prepared using a Leica FC7 ultramicrotome 
equipped with a Leica UC7 cryostage, with which sections approximately 50 nm in 
thickness were cut using a Diatome diamond knife at –80 °C. High-angle annular 
dark field scanning TEM (HAADF STEM) was performed using a JEOL  
JEM-2100F TEM, and a Gatan 806 HAADF STEM detector was used to collect 
dark field data. The TEM was operated at 200 kV, with a 40-μm condenser aperture, 
a HAADF STEM collection angle of 48–168 mrad, and spot size of 0.2 nm. A 
Gatan Digital Micrograph was used to collect and analyze the data. In dark field 
images, high Z regions appear bright and low Z regions are dark. SAXS data were 
collected using a Rigaku S-MAXS 3000 SAXS camera. X-rays were generated 
using a MicroMax-007HFM rotating copper anode source and then focused and 
monochromated using a Confocal Max-Flux double-focusing optic. Wavelength, λ, 
was 1.54059 Å. Samples were characterized over a range of momentum transfer 
vector magnitude, q, of 0.01 Å-1 to 0.7 Å-1. Distance and beam center calibrations 
were performed with silver behenate. Type 2 glassy carbon previously calibrated at 
the Advance Photon Source, Argonne National Laboratory (ANL), was used as a 
secondary intensity standard.26  Data processing and analysis were performed using 
Igor Pro 6.3 and procedures developed at ANL.27 

Ultraviolet-visible (UV-Vis) spectra of the nanoparticles and supramolecular 
polymers were collected at a wavelength range of 250–900 nm in CHCl3 at room 
temperature using a Perkin Elmer UV/VIS/NIR (near infrared) Lambda 1050 
spectrophotometer with a 3D WB (triple detector, wide band) detector module.  
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2.3 Synthesis of 2,6-Bis(1'-Methylbenzimidazoyl)-4-(12-
Thiododecyl)pyridine (MeBIP-SH)  

Freshly ground and powdered KOH (0.98 g, 17.53 mmol) and dry DMSO (80 mL) 
were added to a 100-mL round bottom flask with a stir bar, septum, and needle 
under nitrogen. After the KOH dissolved, MeBIP-OH (2.5 g, 7.01 mmol) and  
1,12-dibromododecane were added to the reaction flask and stirred at 35 °C 
overnight. The reaction mixture was poured into ice water (200 mL) and filtered. 
The crude product was purified by column chromatography (silica gel, CHCl3) to 
yield 2,6-bis(1'-methylbenzimidazoyl)-4-(12-bromododecyl)pyridine, a white solid 
(3.0 g, 71%).  

The 2,6-bis(1'-methylbenzimidazoyl)-4-(12-bromododecyl)pyridine (2.0 g,  
3.30 mmol) and dry DMF (50 mL) were added to a 100-mL round bottom flask 
with stir bar, septum, and a needle under nitrogen and chilled in an ice bath. After  
20 min, potassium thioacetate (1.1 g, 9.63 mmol) was added to the reaction mixture 
and stirred overnight, allowing the ice bath to warm to room temperature. The 
product was extracted with CHCl3 (60 mL) and water (50 mL). The CHCl3 fraction 
was concentrated in vacuo, and the white solid (2,6-bis(1'-methylbenzimidazoyl)-
4-(12-methalthioatedodecyl)pyridine) was purified by recrystallization with hot 
hexanes. The white solid was used in the next step without further purification. 

MeBIP-SH (0.45 g, 0.8 mmol) and MeOH (30 mL) were added to a 100-mL round 
bottom flask with condenser, septum, and a needle under nitrogen. HCl was added 
until the pH of the reaction mixture reached pH 2. The reaction mixture was 
refluxed overnight and concentrated in vacuo to yield a yellow solid (0.40 g, 83%). 
A synthetic scheme for the final product of MeBIP-SH is shown in Fig. 3.  

 
Fig. 3 Synthesis of MeBIP-SH thiol ligand 
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2.4 Synthesis of Octanethiol-Functionalized Gold Nanoparticles  
(2 nm) (OCT-AuNps)  

All glassware was thoroughly cleaned, rinsed with aqua regia, and dried in a 
vacuum oven before use. AuCl3 (150 mg) and 20 mL of a 100-mM DDAB in 
toluene solution were added to a 50-mL round bottom flask with septum. The flask 
was sonicated until AuCl3 dissolved and then purged with nitrogen for 20 min. In 
separate flasks, OCT (0.48 mL, 2.8 mmol) was dissolved in a 100-mM DDAB 
solution (5 mL) and TBAB (0.68 g, 7.76 mmol) was dissolved in a 100 mM DDAB 
solution (10 mL). The OCT/DDAB solution was quickly added to the AuCl3 
reaction mixture, and the solution color changed from red to yellow. After 20 min, 
the TBAB/DDAB solution was then quickly added to the reaction mixture, and the 
solution color turned from yellow to clear and then purple after 5 min. The reaction 
mixture was stirred for 4 h under nitrogen and then poured into 200-mL MeOH. 
The nanoparticles were collected and purified by centrifugation in MeOH 3 times 
and dried in a vacuum oven overnight. 

2.5 Synthesis of MeBIP-Functionalized Gold Nanoparticles  
(2 nm) (MeBIP-AuNps) 

All glassware was thoroughly cleaned, rinsed with aqua regia, and dried in a 
vacuum oven before use. In separate flasks, OCT (0.017 mL, 0.14 mmol) was 
dissolved in 1 mL of CHCl3, TBAB (0.068 g, 0.78 mmol) was dissolved in 100-
mM DDAB solution (5 mL), and MeBIP-SH (0.078 g, 0.14 mmol) was dissolved 
in CHCl3 (2 mL). AuCl3 (15 mg) and 3 mL of a 100-mM DDAB in toluene solution 
were added to a 25-mL round bottom flask with septum. The flask was sonicated 
until AuCl3 dissolved and then purged with nitrogen for 20 min. The OCT solution 
and MeBIP-SH solution were mixed together and quickly added to the AuCl3 
reaction mixture, resulting in the solution color changing from red to yellow. After 
20 min, the TBAB/DDAB solution was then quickly added to the reaction mixture 
and the solution color immediately turned from yellow to clear and then purple after 
5 min. The reaction mixture was stirred for 4 h under nitrogen and then poured into 
200 mL MeOH. The MeBIP-functionalized nanoparticles (Fig. 4) were collected 
and purified by centrifugation in MeOH 3 times. UV-Vis was used to detect free 
MeBIP-SH ligand in the methanol wash. After no MeBIP-SH was detected, the 
nanoparticles were dried in a vacuum oven overnight. A UV-Vis titration was used 
to measure MeBIP concentration per nanoparticle (Fig. 5). 
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Fig. 4 Synthesis of MeBIP-AuNps-functionalized Au nanoparticles 

 
Fig. 5 Titration of MeBIP-AuNps with Zn(ClO4)2 monitored with UV-Vis. The black circle 
locates the isobestic point, which corresponds to the moles of MeBIP ligand per gram of 
MeBIP-AuNps. UV-Vis of AuNps without MeBIP-SH ligands (OCT-AuNps) is shown in 
yellow. 

2.6 Synthesis of Metallo-Supramolecular Polymer Films 

BKB (100 mg, Mn = 3,700 gmol-1, 0.027 mmol) was dissolved in CHCl3 (2.5 mL) 
in a 20-mL scintillation vial. Zn(ClO4)2 (10.06 mg, 0.027 mmol) was dissolved in 
ACN (2.5 mL) in a different 20-mL scintillation vial. OCT-AuNps or MeBIP-
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AuNps (0.0–1.5 mg, 0.0001 mmol) was dissolved in CHCl3 (1 mL) in another  
20-mL scintillation vial. The Nps solution was added to the Zn(ClO4)2 solution and 
stirred for 20 min. This solution was then added to the BKB solution and stirred for 
30 min. The solvent was evaporated and dried in a vacuum oven overnight. The 
solids were redissolved in CHCl3 (1 mL) and cast in a Teflon mold. After 6 h the 
films were dried in a vacuum oven overnight at 40 °C.  

3. Results and Discussion 

3.1 BKB Macromonomer  

The telechelic macromonomer BKB was successfully synthesized using a 
Mitsunobu reaction of MeBIP-OH and hydroxyl-terminated poly(ethylene-co-
butylene) copolymer (Mn = 3,000 g mol-1) (Fig. 2).18 A titration with the BKB 
monomer and Zn(ClO4)2 in CHCl3/ACN was monitored by UV-Vis (Fig. 6). The 
absorbance of the free MeBIP ligand (319 nm) decreased as the complex of 2 
MeBIP ligands (350 nm) with one Zn cation was formed. An isobestic point 
occurred at a Zn to BKB ratio of 1:1 and confirmed that BKB contains 2 terminal 
MeBIP ligands per poly(ethylene-co-butylene) oligomer chain. 

 
Fig. 6 Titration of BKB with Zn(ClO4)2 monitored by UV-Vis. Free MeBIP ligand absorbs 
at 319 nm, and complexed ligand absorbs at 350 nm. As Zn(ClO4)2 is added, the concentration 
of free ligand decreases, which results in a decrease in free-ligand absorbance intensity. The 
concentration of complexed ligand increases, which results an increase in complexed ligand 
absorbance. At the isobestic point (black circle), the complexed ligand intensity stopped 
increasing. The inset graph corresponds to the absorbance vs. Zn:BKB ratio during the 
titration. 
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3.2 OCT-Functionalized Gold Nanoparticles  

Using a homogeneous reaction based on previous work by Peng et al. (Fig. 4),28  
2-nm OCT-functionalized Au nanoparticles were synthesized. In Fig. 5, the surface 
plasmon resonance of the OCT-AuNps was measured but not, apparently, in 
CHCl3. Due to the ultrasmall size of the nanoparticle (<2 nm) and the thiol-capping 
ligand, the electronics of the nanoparticle core differ from nanoparticles between 5 
and 50 nm,29 and the typical surface plasmon resonance disappears due to the 
reduction of the number of Au surface atoms to core atoms.30–32 Bright-field TEM 
was used to identify the nanoparticle size (Fig. 7) of 1.8 nm. Further investigation 
into the synthesis of larger Au nanoparticles was successful but with large particle 
size distribution. 

 

Fig. 7 Bright-field TEM of OCT-AuNps and histogram of nanoparticle sizes 

3.3 MeBIP-Functionalized Gold Nanoparticles 

Using the adapted conditions optimized for the OCT-AuNps, 2-nm MeBIP-
functionalized Au nanoparticles were synthesized. CHCl3 was added to the  
MeBIP-SH ligand to increase solubility. Equal ratios of OCT to MeBIP-SH were 
needed to incorporate MeBIP-SH onto the surface of the nanoparticles. Attempts 
to synthesize 100% MeBIP-SH-capped nanoparticles were unsuccessful, possibly 
due to the steric and bulky constraints of the MeBIP ligand.33,34 The OCT helped to 
separate the MeBIP ligands while still maintaining ligand thiol ligand coverage on 
the surface of the nanoparticle.33,34 Ligand exchange experiments with 2-nm  
OCT-AuNps or 10-nm citric-acid-capped Au nanoparticles with MeBIP-SH were 
unsuccessful, probably due to the steric constraints with the MeBIP ligand but also 
due to competing interactions of amine—Au and sulfur—Au atoms. A 1.8-nm 
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MeBIP-SH ligands were attached to each Au nanoparticle, a titration of MeBIP-
AuNps in CHCl3 with Zn(ClO4)2 in ACN was monitored by UV-Vis. An isobestic 
point occurred when 0.06 µmol of Zn2+ was added to the solution of MeBIP-AuNps. 
This corresponds to half of the mols of MeBIP ligand in the sample of 
nanoparticles. Based on the weight of a 1.8-nm Au nanoparticle and the number of 
moles of MeBIP per gram measured at the isobestic point of the UV-Vis 
titration,33,34 there were 20–30 MeBIP-SH ligands per nanoparticle on average. 
Estimation of nanoparticle weight was previously explained by Hayes et al.33,34 

 

Fig. 8 HAADF STEM of MeBIP-AuNps with inlayed histogram of nanoparticle sizes 

3.4 Nanocomposite Films 

Both the OCT-AuNps and the MeBIP-AuNps were incorporated into the metallo-
supramolecular polymers [BKB:Zn(ClO4)2], and free-standing films were prepared 
at several nanoparticle loadings. The OCT-AuNps were loaded into the 
supramolecular polymers at 0, 1, and 10 wt% to investigate the maximum possible 
loading. All films were transparent except for the 10-wt% nanocomposite film. 
MeBIP-AuNps were loaded into the supramolecular polymers at 0.10, 0.15, 0.25, 
0.50, 0.60, 1.00, and 1.50 wt%.  

The morphology and nanoparticle dispersion of these films were investigated using 
SAXS and TEM. The scattering peaks at q*, 2q*, 3q*, and 4q* (labeled with black 
arrows) in Fig. 9 indicated lamellar morphology in the pure BKB:Zn(ClO4)2 
polymer. The peak at 10.67 Å-1 corresponded to the distance between metal-ligand 
complexes previously described.20 BKB supramolecular polymers typically 
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exhibited lamellar morphology with divalent metal cations.18 This microphase-
separated morphology stemmed from a hard phase comprising the metal-ligand 
complexes and a soft phase comprising the poly(ethylene-co-butylene) polymer 
core.18 For the 1- and 10-wt% OCT-AuNps nanocomposite films, only q*, 2q*, and 
3q* Bragg peaks were apparent, with an increase in intensity of the 3q* peak 
because the OCT-AuNPs disrupt lamellar order. This intensity increase was 
probably due to increased nanoparticle aggregate scattering. TEM also revealed 
lamellar morphology in the BKB:Zn(ClO4)2 film, and this was retained in the  
1- and 10-wt% composite films (Fig. 10). However, the 10-wt% nanocomposite 
film also had a large amount of aggregation and appeared black.  

 
Fig. 9 SAXS of BKB:Zn(ClO4)2 nanocomposite films 
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Fig. 10 TEM of OCT-AuNPs nanocomposites: a) pure BKB:Zn(ClO4)2 supramolecular 
polymer, b) HAADF STEM of 1-wt% OCT-AuNps nanocomposites, and c) BF TEM of  
10-wt% OCT-AuNps on a lace-carbon-coated copper TEM grid 

When the MeBIP-AuNps were incorporated into the nanocomposite films, the 
order of addition during synthesis became crucial. The MeBIP-AuNp solution was 
added to the BKB solution first, followed by the Zn(ClO4)2 solution. The SAXS 
profile does not change significantly between loadings. However, after HAADF 
STEM experiments it became apparent there was a high level of nanoparticle 
aggregation even at low nanoparticle loadings (0.15–1.5 wt%) and sonication  
(Figs. 11b and 11c) 

a) b)

c)
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Fig. 11 HAADEF STEM of MeBIP-AuNp nanocomposites: a) pure BKB:Zn(ClO4)2 
supramolecular polymer, b) 0.5% MeBIP-AuNp nanocomposite synthesized from first 
addition order, c) 1.5% MeBIP-AuNp nanocomposite synthesized from first addition order, 
and d) 0.25% MeBIP-AuNp nanocomposite synthesized from final addition order 

With a change in the order of addition, less nanoparticle aggregation was observed, 
but macroscopic phase separation occurred in composites containing 0.6 wt% or 
more. The MeBIP-AuNp solution was added to the Zn(ClO4)2 solution, followed 
by the addition of the BKB solution. Interestingly, the supramolecular 
polymerization gelled upon the addition of the BKB solution and only dissolved 
upon the addition of more CHCl3. 

The morphology of the films prepared using the best sample prep method was 
investigated with SAXS and TEM. The SAXS profiles of these nanocomposite 
films were similar to the previous films likely revealing a lamellar morphology 
(Figs. 12 and 13). HAADF STEM confirmed the lamellar morphology but with 
more long-range order than the pure BKB:Zn(ClO4)2 film (Fig. 11d). Possibly, 
when the Zn(ClO4)2 is added to the nanoparticle solution, all of the free MeBIP 
ligand is complexed with a Zn metal cation and ClO4

- counterion.35,36 This reduced 
the amount of aggregation or complexation between nanoparticles and possibly 
increased the probability of the MeBIP-AuNps from incorporating into the 
supramolecular polymer assembly.35,36 The resulting morphology was still lamellar 
but with increased long-range order.

a) b)

c) d)
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Fig. 12 SAXS of MeBIP-AuNps nanocomposites synthesized in the original addition order 

 
Fig. 13 SAXS of MeBIP-AuNps nanocomposites synthesized in the final addition order 
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At loadings ≥0.6 wt%, the macrophase aggregation occurred due to nanoparticle 
precipitation (Fig. 14). At lower loadings, polymer chains deformed to 
accommodate the functionalized nanoparticles, but this resulted in an entropic 
penalty. This penalty may become too large with increased nanoparticle 
concentration, leading to the macrophase separation observed. 

 
Fig. 14 MeBIP-AuNps nanocomposite films synthesized using the final order of addition 

4. Conclusion 

The synthesis of MeBIP-functionalized Au nanoparticles was successful, and their 
incorporation into supramolecular nanocomposites was reported. The 
morphologies of the nanocomposite films with nanoparticle loadings from 0 to  
10 wt% were investigated with SAXS and TEM. The appropriate order of addition 
during the supramolecular polymer assembly was determined for MeBIP-AuNps-
containing nanocomposites and strongly influenced the final morphology of the 
supramolecular polymer films. Large-scale aggregation and phase separation was 
detected for MeBIP-AuNps loadings ≥0.6 wt% with lamellar morphology retained 
for all films.  

 

 

1.0% 
MeBip-SH NPs

0.60% 
MeBip-SH NPs

0.25% 
MeBip-SH NPs

0.10% 
MeBip-SH NPs
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List of Symbols, Abbreviations, and Acronyms 

ACN   acetonitrile 

ANL   Argonne National Laboratory 

Au   gold 

AuNp   gold nanoparticle 

AuCl3   gold chloride 

BKB   telechelic macromonomer 

CHCl3   chloroform 

DDAB   didodecyldimethylammonium bromide 

DMF   N,N-dimethylformamide 

DMSO   dimethyl sulfoxide 

HAADF STEM high-angle annular dark field scanning transmission electron 
microscopy 

HCl   hydrochloric acid 

KOH   potassium hydroxide 

MeBIP   2,6-bis(1'-methyl-benzimidazolyl)-4-hydroxypyridine 

MeBIP-SH  2,6-bis(1'-methyl-benzimidazoyl)-4-(12-thiododecyl) 
pyridine 

MeOH   methanol 

NIR   near-infrared 

OCT   1-octanethiol 

SAXS   small-angle X-ray scattering 

TBAB   borane tert-butylamine complex 

TEM   transmission electron microscopy 

UV-Vis  ultraviolet-visible 

Zn(ClO4)2  zinc (II) perchlorate hexahydrate 
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